СЕМИНАР-ПРАКТИКУМ

«Методы решения планиметрических задач»

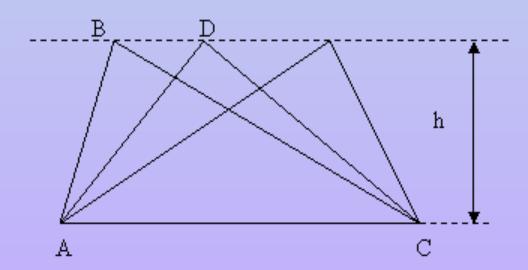
Метод площадей в решении задач

Квасова О.Д., учитель математики ВКК

Основные свойства площадей

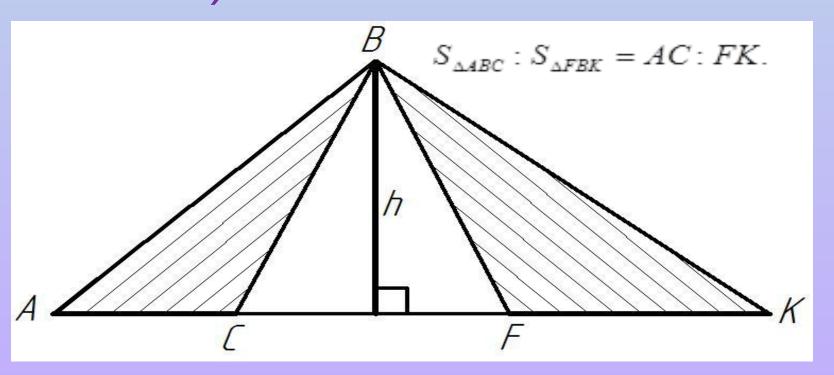
• Свойство №1

Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.



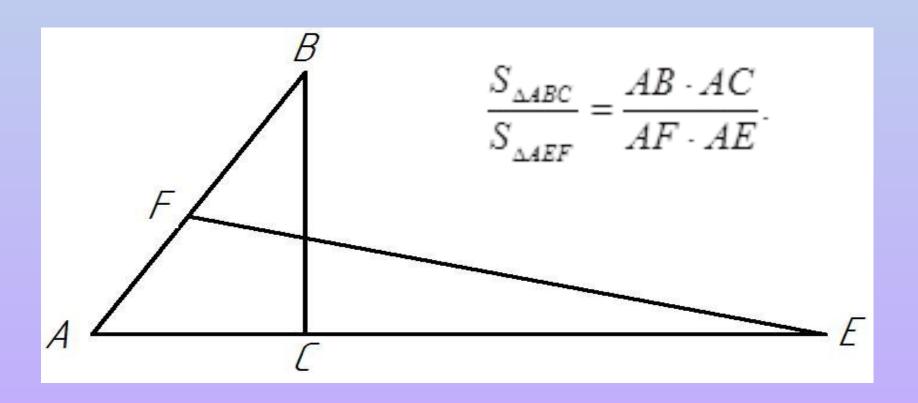
Свойство №2

Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).



Свойство №3

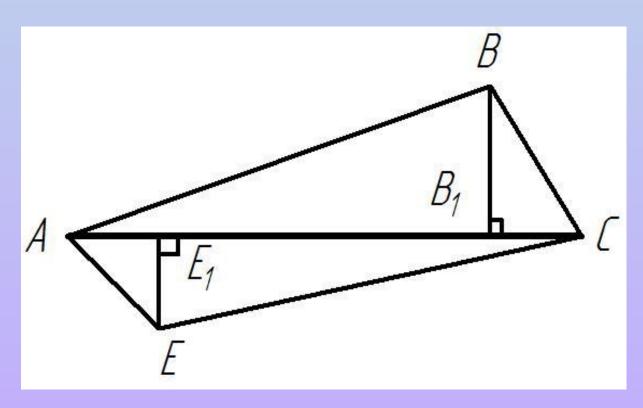
Если два треугольника имеют общий угол (или равный угол), то их площади относятся как произведение сторон, заключающих этот угол.



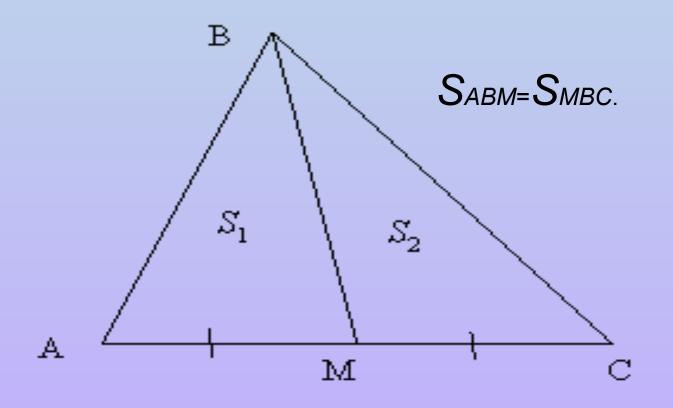
Свойство №4 Площади треугольников, имеющих равные стороны, относятся как соответствующие этим сторонам

высоты.

$$S_{\Delta ABC}: S_{\Delta AEC} = BB_1: EE_1.$$

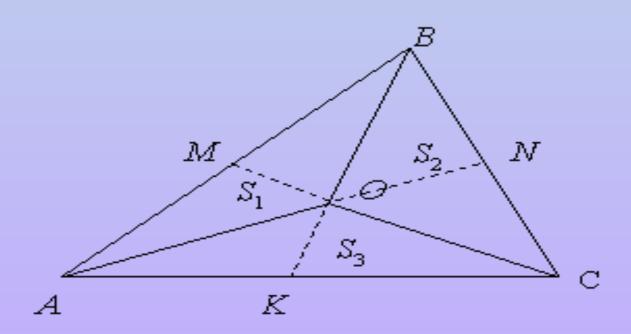


Свойство №5 Медиана делит треугольник на два равновеликих треугольника.



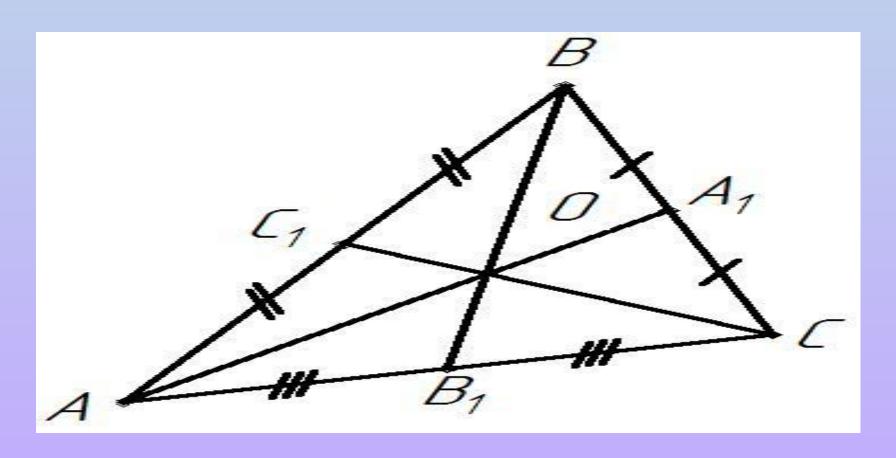
Свойство №6 1)Три медианы треугольника делят его на три равновеликих треугольника.

$$S_{AOB}=S_{COB}=S_{AOC}$$

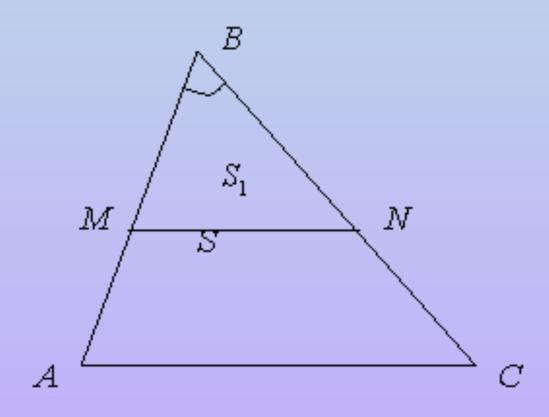


2)Три медианы треугольника делят его на шесть равновеликих треугольников.

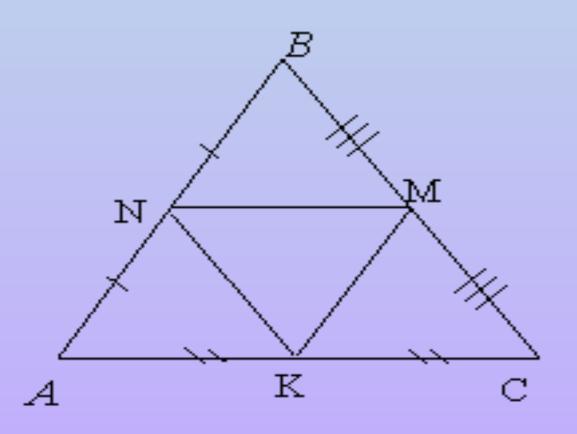
$$S_{AOC_1} = S_{BOC_1} = S_{BOA_1} = S_{COA_1} = S_{COB_1} = S_{AOB_1}.$$



Свойство №7 Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

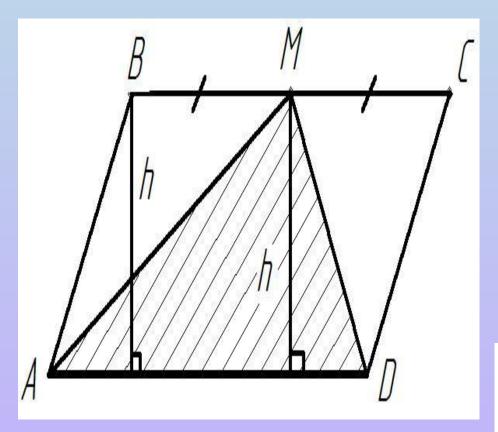


Свойство \mathcal{N}_2 8 Средние линии треугольника площади S отсекают от него треугольники площади $^{1}\!\!/_{\!\!4}$ S •



Дано: ABCD - параллелограмм, BM=MC, SABM=4

Haŭmu: SAMD



$$\frac{S_{\Delta AMD}}{S_{\Delta ABCD}} = \frac{\frac{1}{2} \cdot h \cdot AD}{h \cdot AD} = \frac{1}{2},$$

$$S_{AMD} = \frac{1}{2} S_{ABCD}$$

$$S_{ABM} = S_{CMD}$$

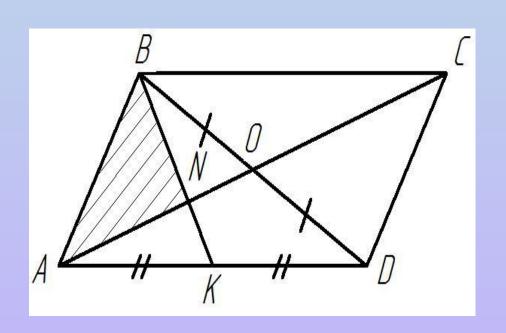
$$S_{ABM} + S_{CMD} = \frac{1}{2} S_{ABCD} = 8$$

 $S_{AMD}=8$

Дано: ABCD- параллелограмм, AK=KD

 $BK \cap AC = N$, $S_{ABCD} = 60$.

Haŭmu: SABN



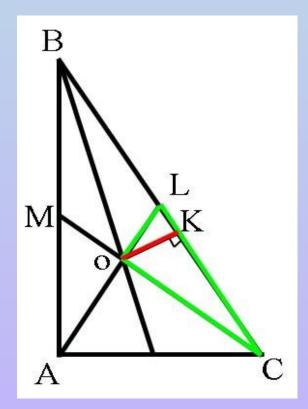
$$S_{\Delta ABD} = S_{\Delta DBC} = 30,$$

$$S_{\Delta ABN} = \frac{1}{3} S_{\Delta ABD}.$$

(свойство №6 (1))

$$SABN=10$$

Найти расстояние от точки пересечения медиан прямоугольного треугольника до его гипотенузы, равной 25 см, если один из катетов равен 20 см.



Дано: Дано

OK TBC

Найти: ОК.

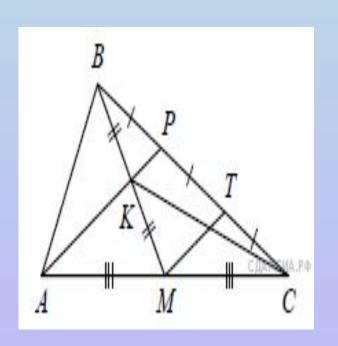
Решение:

- **1. △ABC** (∠ A=90). По теореме Пифагора AC=15.
 - 2. О точка пересечения медиан, S_{OLC} = S_{ABC} / 6; (свойство №6 (2)) S_{OLC} = 150/ 6; S_{OLC} = 25
 - 3. С другой стороны S_{OLC} = 1/2LC · OK; OK = 2 S_{OLC} / LC; OK = 4 см.

Ответ: 4см.

<u>Задача 4</u>

Через середину К медианы ВМ треугольника АВС и вершину А проведена прямая, пересекающая сторону ВС в точке Р. Найдите отношение площади треугольника АВК к площади четырёхугольника КРСМ.



Решение.

Проведём отрезок *MT*, параллельный *AP*. Тогда *MT* — средняя линия треугольника *APC* и *CT* = *TP*, а *KP* — средняя линия треугольника *BMT* и *TP* = *BP*.

Обозначим площадь треугольника ВKP через S . Тогда $S_{\Delta KPC}$ =2S, т.к. треугольник KPC, имеет ту же высоту и вдвое больше основание.

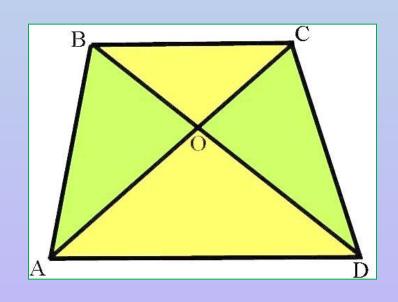
Значит, $S_{\Delta CKB} = S_{\Delta CKM} = 3S$ (СК – медиана треугольника СМВ).

 $S_{\Delta CKM} = S_{\Delta AKM} = 3S$ (КМ– медиана треугольника АКС). $S_{\Delta ABK} = S_{\Delta AKM} = 3S$ (АК – медиана треугольника АМВ).

Итак, $S_{KPCM} = S_{\Delta CKM} + S_{\Delta KPC} = 5S$. $S_{\Delta ABK} = 3S$ Значит, $S_{\Delta ABK}$: $S_{KPCM} = 3:5=0,6$ Ответ: 0,6.

<u>s moepatoenue 1</u>

В четырехугольнике ABCD стороны AD и BC параллельны тогда и только тогда, когда треугольники ABO и CDO равновелики (О — точка пересечения диагоналей четырехугольника).



Дано: $S_{\Delta AOB} = S_{\Delta COD}$. Доказать: $AD \parallel BC$.

Доказательство.

1. T. K. $S_{\Delta AOB} = 1/2OA \cdot OB \cdot \sin \angle AOB \mu$ $S_{\Delta COD} = 1/2OC \cdot OD \cdot \sin \angle COD$, TO $OA \cdot OB \cdot \sin \angle AOB = OC \cdot OD \cdot \sin \angle COD$.

AO·BO=CO·DO; T.e. AO:OC=DO:OB.

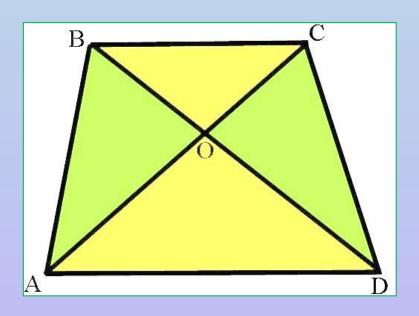
2. ΔAOD ~ ΔCOB (по 2 признаку подобия:

AO:OC=DO:OB и \angle AOB = \angle BOC как вертикальные).

Значит, ∠ВСО=∠ОАД.

3. Т.к. ∠BCO=∠OAD и они накрестлежащие при прямых AD и BC и секущей AC, тоAD | BC.

Обратное утверждение



Дано: AD ВС.

Доказать: **S**_{ДАОВ}=**S**_{ДСОД}. Доказательство.

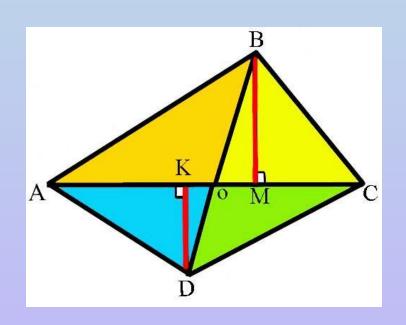
1. $S_{\Delta AOB} = S_{\Delta ABC} - S_{\Delta BOC}$, $S_{\Delta COD} = S_{\Delta DBC} - S_{\Delta BOC}$

2. S_{∆ABC} = S_{∆DBC}, т. к. они имеют одно и то же основание ВС, а опущенные на него высоты равны, поскольку AD | ВС.

Значит, $S_{\Delta AOB} = S_{\Delta COD}$.

Утверждение 2

В выпуклом четырехугольнике АВСД выполняется равенство $S_{AAOB} \cdot S_{ACOD} = S_{AAOD} \cdot S_{ABOC}$ (О – точка пересечения диагоналей).



Доказательство.

1. ДАОВ и Д ВОС имеют общую высоту ВМ.

Поэтому: $S_{AAOB}:S_{ABOC}=AO:OC$

2. Аналогично:

$$S_{\Delta AOD}: S_{\Delta COD} = AO:OC.$$

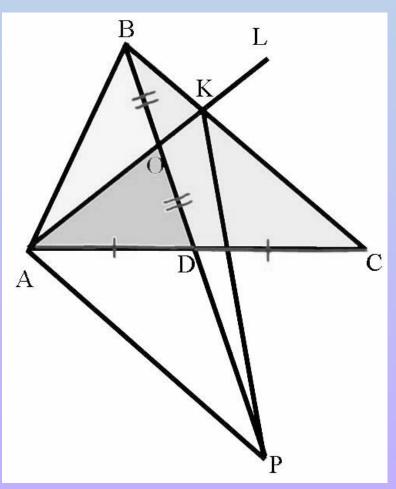
3. Из этих двух равенств следует, что

$$S_{\Delta AOB}: S_{\Delta BOC} = S_{\Delta AOD}: S_{\Delta COD},$$
или $S_{\Delta AOB}: S_{\Delta COD} = S_{\Delta AOD}: S_{\Delta BOC}$

В случае, если AD
$$\parallel$$
 BC S $^2_{\Delta AOB}$ =S $^2_{\Delta COD}$ =S $_{\Delta AOD}$ $^2_{\Delta BOC}$ или S $_{\Delta AOB}$ =S $_{\Delta COD}$ = $\sqrt{S_{\Delta AOD}}$ $\sqrt{S_{\Delta BOC}}$

$$\mathbf{S}_{\mathsf{ABCD}} = \mathbf{S}_{\mathsf{\Delta AOB}} + \mathbf{S}_{\mathsf{\Delta BOC}} + \mathbf{S}_{\mathsf{\Delta COD}} + \mathbf{S}_{\mathsf{\Delta AOD}} = (\sqrt{S_{\Delta AOD}} + \sqrt{S_{\Delta BOC}})^2$$

В треугольнике ABC проведена медиана BD , а через её середину и вершину А проведена прямая АL. В результате такого построения треугольник АВС разбит на три треугольника и один четырехугольник. Найти площади этих фигур, если площадь АВС равна 60.



Решение:

1. Так как BD – медиана, то

 $S_{\Delta ABD} = S_{\Delta CBD} = 0.5S_{\Delta ABC} = 30;$

2. AO – медиана в треугольнике ABD,

поэтому $S_{\Delta AOB} = S_{\Delta AOD} = 0.5S_{\Delta ABD} = 15.$

3. Продолжим медиану BD за точку D так, что DP=BD. Рассмотрим четырехугольник ABKP. По построению, BD=DP, тогда $S_{\Delta ABD} = S_{\Delta ADP} = 30$.

4. Точка D стала точкой пересечения диагоналей четырехугольника АВСР, в которой они делятся пополам. Тогда ABCP – параллелограмм, т.е. AP ∥ BK.

5. Значит, $S_{\Delta POK} = S_{\Delta AOB} = 15$.

6. В силу утверждения 2 можем заключить, что $S^2_{\Delta AOB} = S_{\Delta AOP} \cdot S_{\Delta BOK}$.

Заметим, что $S_{\Delta AOP} = 3S_{\Delta AOB} = 3 \cdot 15 = 45$, 225=45· $S_{\Delta BOK}$, откуда $S_{\Delta BOK} = 5$. Тогда $S_{OKCD} = 60 - 30 - 5 = 25$

OTBET: $S_{\Delta AOB} = S_{\Delta AOD} = 15$; $S_{\Delta BOK} = 5$; $S_{OKCD} = 25$

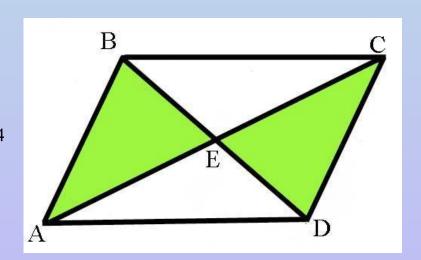
Диагонали выпуклого четырехугольника ABCD пересекаются в точке E, $S_{ABE} = S_{CED}$. Площадь четырёхугольника ABCD больше площади треугольника ABE не более чем в 4 раза. Найти CD, если AB = $\sqrt{7}$

Решение.

1. Так как $S_{AABE} = S_{ACED}$, тогда по утверждению 1 AD \parallel BC.

2. Пусть $S_{\Lambda AED} = S_1$, $S_{\Lambda BEC} = S_2$. Из утверждения 2 следует, что $S_{\Lambda ABE} = S_{\Lambda CED} = \sqrt{S_1 S_2}$.

3. Так как
$$\frac{S_{ABCD}}{S_{\Delta ABE}} \le 4$$
, $m.e. \frac{\left(\sqrt{S_1} + \sqrt{S_2}\right)^2}{\sqrt{S_1 S_2}} \le 4 \sqrt{\frac{S_1}{S_2}} + \sqrt{\frac{S_2}{S_1}} + 2 \le 4$ Значит, $\sqrt{\frac{S_1}{S_2}} + \sqrt{\frac{S_2}{S_2}} \le 2$



4. Равенство имеет место только в том случае, когда

$$\sqrt{\frac{S_1}{S_2}} = \sqrt{\frac{S_2}{S_1}} = 1, m.e.S_1 = S_2$$

5.Значит, в силу утверждения1, заключаем, что AB || CD. Тогда ABCD − параллелограмм и CD=AB=√7

СПАСИБО ЗА ВНИМАНИЕ!