

Made by ALEX

P1 Chapter 3

$<$ Functions and combining functions»>

A function is a rule, which calculates values of $f(x)$ for a set of values of x.
e.g. $f(x)=2 x-1$ and $g(x)=\sin x$ are functions.
$f(x)$ is called the image of x
Another Notation

$$
\begin{gathered}
f: x \quad 2 x-1 \text { means } f(x)=2 x-1 \\
f(x) \text { is often replaced by } y .
\end{gathered}
$$

We can illustrate a function with a diagram

The rule is sometimes called a mapping.

A bit more jargon

To define a function fully, we need to know the values of x that can be used.
The set of values of x for which the function is defined is called the domain.
In the function $f(x)=x^{2}$ any value can be substituted for x, so the domain consists of

all real values of x

We write $x \in \quad$ alues because there is a branch of mathemastcondthifodr daalseditdf rallmbeark ritrulbeanse not \in means "belongsetd."

$$
\text { So, } x \in \square \text { means } x \text { is any real number }
$$

The range of a function $f(x)$ is the set of values given by $f(x)$.
e.g. Any value of x substituted into $f(x)=x^{2}$ gives a positive (or zero) value.
So the range of $f(x)=x^{2}$ is $f(x) \geq 0$
If $y=f(x)$, the range consists of the set of y-values, so
domain: x-values
range: y-values
Tip: To help remember which is the domain and which the range, notice that d comes before r in the alphabet and x comes before y.

The range of a function $f(x)$ is the set of values given by $f(x)$.
e.g. Any value of x substituted into $f(x)=x^{2}$ gives a positive (or zero) value.
So the range of $f(x)=x^{2}$ is $f(x) \geq 0$
If $y=f(x)$, the range consists of the set of y-values, so
domain: \underline{x}-values
range: ν-values
Tip: To help remember which is the domain and which the range, notice that d comes before r in the alphabet and x comes before y.

The set of values of x for which the function is defined is called the domain.

The range of a function is the set of values given by the rule.

$$
\text { domain: } \underline{x} \text {-values } \underline{\text { range: } \underline{y} \text {-values } .}
$$

e.g. 1 Sketch the function $y=f(x)$ where $f(x)=x^{2}+$ wrat-write down its domain and range.

Solution: The quickest way to sketch this quadratic function is to find its vertex by completing the square.

$$
\begin{aligned}
y=x^{2}+4 x-1 & \Rightarrow y=(x+2)^{2}-4-1 \\
& \Rightarrow y=(x+2)^{2}-5
\end{aligned}
$$

This is a translation from $y=x^{2}$ of $\left[\begin{array}{l}-2 \\ -5\end{array}\right]$
so the vertex is $(-2,-5)$.

So, the graph of $y=x^{2}+4 x-1$ is

domain: The x-values on the part of the graph we've sketched go from $\mathbf{- 5}$ to +1 . . . BUT we could have drawn the sketch for any values of x. So, we get $x \in \square$ (x is any real number) BUT there are no y-values less than -5, . . . so the range is $y \geq-5$
(y is any real number greater than, or equal to, -5)
e.g. 2 Sketch the function
where Hence find the domain and range of
Solution: $y=f(x)$ is a translation from so the graph is:

domain: x-values

$$
x \geq-3
$$

(We could write
range: y-values
instead of y)

SUMMARY

- To define a function we need a rule and a set of values.
- Notation:

means

- For
the x-values form the domain the or y-values form the range e.g. For
the domain is the range is

Exercise

1. Sketch the functions

where

For each function write down the domain and range

Solution:

(a)

domain:
range:
(b)

domain:
range:

We can sometimes spot the domain and range of a function without a sketch.
e.g. For we notice that we can't square root a negative number (at least not if we want a real number answer) so,

$x+3$ must be greater than or equal to zero.

So, the domain is \square
The smallest value of is zero.

Other values are greater than zero.
So, the range is \square

Functions of a Function

Suppose
and
then,
x is replaced by 3

Functions of a Function

Suppose and
then, and

Functions of a Function

Suppose and
then, and

We read as " f of g of x "
is "a function of a function" or compound function.
is the inner function and the outer.
x is "operated" on by the inner function first.
So, in we do g first.

Notation for a Function of a Function

is often written as

does NOT mean multiply g by f.
When we meet this notation it is a good idea to change it to the full notation.

> I'm going to write always!
e.g. 1 Given that and
find

Solution:

e.g. 1 Given that and

Solution:

Solution:

e.g. 1 Given that and
find

Solution:

Solution:

Exercise

1. The functions f and g are defined as follows:

R

(a) What is the range of f ?
(b) Find (i)
and (ii)
Solution: (a) The range of f is
(b) (i)
(ii)

Periodic Functions

Functions whose graphs have sections which repeat are called periodic functions.
e.g.

seats every radian

It has a period of

This has a period of 3 .

Some functions are even
e.g.

Even functions are symmetrical about the y - axis

So, \square
e.g.

e.g.

Others are odd

Many functions are neither even nor odd

e.g.

Try to sketch one even function, one odd and one that is neither. Ask your partner to check.

SUMMARY

- A compound function is a function of a function.
- It can be written as which means
- The inner function is is not usually the same as is read as " f of g of x ".

